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Readings for this lecture 

  Chest & West 
•  Chapters 6 & 7 

  Wheeler 
•  Chapter 6 

  Additional readings 
•  Buffer Overflows: Attacks and Defenses for the Vulnerability of the 

Decade, Crispin Cowan, et al.  
•  Smashing The Stack For Fun And Profit, Aleph One  
•  Beyond Stack Smashing: Recent Advances in Exploiting Buffer 

Overruns. Pincus and Baker.  
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Today’s Agenda 

  Buffer Overflow Sources 
  Buffer Overflow Attack Mechanics 
  Possible system-level solutions 
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  Extremely common bug.    
•  First major exploit:  1988 Internet Worm.   fingerd. 

  15 years later:    ≈ 50% of all CERT advisories: 
•  1998:  9 out of 13              
•  2001:  14 out of 37 
•  2003:  13 out of 28 

  Often leads to total compromise of host. 

  Developing buffer overflow attacks: 
•  Locate buffer overflow within an application. 
•  Design an exploit. 

Buffer overflows 



Examples 

  (In)famous: Morris worm (1988) 
•  gets() in fingerd 

  Code Red (2001) 
•  MS IIS .ida vulnerability 

  Blaster (2003) 
•  MS DCOM RPC vulnerability 

  Mplayer URL heap allocation (2004) 
% mplayer http://`perl –e ‘print 
“\””x1024;’` 



What is a Buffer Overflow? 

  Intent 
•  Arbitrary code execution 

-  Spawn a remote shell or infect with worm/virus 
•  Denial of service 

  Steps 
•  Inject attack code into buffer 
•  Redirect control flow to attack code 
•  Execute attack code 



Attack Possibilities 

  Targets 
•  Stack, heap, static area 
•  Parameter modification (non-pointer data) 

-  E.g., change parameters for existing call to exec() 
  Injected code vs. existing code 
  Absolute vs. relative address dependencies 
  Related Attacks 

•  Integer overflows, double-frees 
•  Format-string attacks 
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Buffer Overflows 

  Extremely common programming flaw. 
•  Causes difficult to debug problems 
•  Also a leading cause of security vulnerabilities 

  Caused when a program attempts to store more data in a 
buffer than it can hold. 

char buf[4]; 

strcpy(buf, “abcd”); 

A B C D \0 

buf overflowed by NIL terminator 
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Exploitable Buffer Overflows 

  When the source of the data is controlled by the user/attacker 
 #include <stdio.h> 

 int main(int argc, char * argv[]) { 

  char name[26]; 
  printf(“Please type your name: \n”); 

  gets(name); 
  printf(“Your name is %s\n”, name); 

 } 

$./name 

Please type your name: Ron Ritchey 

$./name 

Please type your name: AAAAAAAAAAAAAAAAAAAAA 
AAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Beginning of overflow 

OK 

Overflow 
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C string storage 

  Much of the problem with buffer overflows comes from the way 
that C represents strings 
•  As an array of chars 
•  Terminated by a NIL 

  Many system calls count on the NIL value to properly 
terminate 

  Allocating space for strings can be misleading  
as you must explicitly leave space for the  
NIL 

#define MAXNAME 7 

char str[MAXNAME] // Not long enough 

strcpy(str, “Ritchey”); // “Ritchey” is 8 chars long 
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Dangerous library routines 

  ‘C/C++’ are filled with routines that do not perform bounds 
checking 
•  strcpy, strcat 

-  Count on the NIL character to terminate 
-  Will happily overwrite memory until a NIL is read from source 

•  sprintf,etc 
-  Must ensure destination buffer large enough to hold string that 

results from all of the input variables 
•  gets, scanf, etc 

-  Do not limit input to fixed size 
•  Format string driven functions 

-  printf,sprintf, etc. 
-  Allow attackers to write arbitrary values into memory if they can 

influence content of format string 
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sprintf 

  Very difficult to construct patterns of a fixed length. 
  Destination must be large enough to hold the largest possible result 
  Symantecs of width/precision vary depending upon the type of 

variable 

char buf[BUFFER_SIZE]; 

sprintf(buf, "%*s",  sizeof(buf)-1, "long-string"); 
  /* WRONG */ 

sprintf(buf, "%.*s", sizeof(buf)-1, "long-string"); 
  /* RIGHT */ 
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Alternative functions that bound operations 

  Many replacement functions exist which allow you to specify a 
maximum length 

  strncpy(char *dst, char *src, size_t len) 
•  Copies up to len bytes from src to dst 
•  If src length >= to len, dst will NOT be NIL terminated 
•  If src length < len, remainder of dst will be NIL filled 

  strncat(char *dst, char *src, size_t len) 
•  Appends up to len chars to end of dst 
•  Like strncpy does not NIL terminate if length  of src >= len 
•  Be careful!  len refers to the space remaining in dst 
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A better strncpy: strlcpy 

  Available at ftp://ftp.openbsd.org/pub/OpenBSD/src/lib/libc/
string/strlcpy.3. 

  size_t strlcpy (char *dst, const char *src, size_t size); 
•  Copies up to size-1 characters from the NUL-terminated string src to 

dst, NIL-terminating the result 
•  dst is guaranteed to be nil terminated if size > 0 
•  Size refers to total size of dst, not number of  

bytes from src 
  size_t strlcat(char *dst, const char *src, size_t size) 

•  Concatenates src to dst using same semantics as strlcpy 
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Bounding is not a panacea 

  It is still possible to introduce buffer overflow errors when using 
bounded functions 
•  Use a bad value for bound 

-  Source length instead of  
destination length 

-  Lack of room for  
NIL termination 

•  Miscalculation of space available for concatenation (e.g. strncat) 
-  Providing length of buffer instead of remaining space in buffer 

•  Concatenated value changes semantics of use 

void badfunc(char *s) { 
  char buf[10]; 

  strncpy(buf, s, strlen(s)); 
} 



Copyright Ronald W. Ritchey 2008, All Rights Reserved 
15 

Concatenation bounds must be based on 
calculation of remaining space available 

  Even the bounded concatenation 
routines (e.g. strncat, strlcat) can 
easily overflow buffers 
•  When given unterminated input 

-  Routines search for first NIL in input 
to begin concatenation operation.  If 
no NIL is provided, routines will seek 
past end of buffer until a NIL is 
reached in memory.  This can cause 
very difficult to diagnosis failures 

•  When bound value calculation is wrong 
-  Bound value set to total size of 

variable instead of remaining size 
-  Remaining size value calculation 

flawed 

void badfunc() { 
  char buf[10]; 

  char *s = “1234567890”; 

  strncpy(buf, s, sizeof(buf)); 

  strncat(buf, “;”, sizeof(buf)); 
} 

void betterfunc() { 
  char buf[10]; 

  char *s = “1234567890”; 

  strncpy(buf, s, sizeof(buf)); 

  buf[sizeof(buf)-1] = ‘\0’; 

  strncat(buf, “;”,  
    10 - strlen(buf)); 

} 

What’s still 
wrong with this? 
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String truncation vulnerabilities 

  Just limiting the length of the input may not be enough to 
prevent vulnerability.  E.g. 

fgets(line, 128, stdin); 
// Check format 
strncpy(buf, line, 12); 
if (strncmp(“.mil”, line+strnlen(line,128)-4 , 4)) { 
  // Allow access 
} 

  Input ABCDE123.milabcdefg will be accepted 
  Always perform format checks just before use 
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Always make sure to terminate your strings 

  Anytime there is a potential of truncation, make sure to 
terminate properly 
•  Writing NIL to last possible value often a good safety method 

H e l l o W o r l d \0 
char buf[20]; 
strncpy(buf, “Hello World”, 
  sizeof(buf)); 
buf[sizeof(buf)-1] = ‘\0’; 

H e l l o W o r l d W a r T h r e strncpy(buf, “Hello World 
  War Three”, sizeof(buf)); 
buf[sizeof(buf)-1] = ‘\0’; 

\0 

\0 IP-> 
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Format string vulnerabilities 
  Format strings specify a set of formatting rules to be applied to create 

a string based upon a set of input variables 
 testfunc(char *varname, int varvalue) { 
   printf(“%s value is %2d”, varname, varvalue); 
 } 

  Never allow the user to control the format string 
 badfunc(char *s) { 

        printf(s); 
 } 

•  May allow attacker to read arbitrary data locations in memory 
•  With use of %n directive may be able to write to memory 

-  %n writes the number of characters processed so far to the address 
specified in the parameter list 
 printf(“ABC%n”,number); 

-  Overwriting any location of memory possible if attacker can control the 
value of n and the location of memory that n will be written to 

-  May allow attacker to gain control of instruction pointer 
  E.g. overwrite ret value on stack, overwrite commonly called function pointer, etc. 
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Watch out for multi-byte character formats 

  To support foreign character sets, multi-byte character formats 
have been created 
•  Unicode, UTF-8, UTF-16, ISO-8859-1 

  Bytes per character vary based upon standard 
•  Fixed Width – ISO-8859-1, UTF-32 
•  Variable Width – UTF-8, UTF-16 

  When using multi-byte functions, must ensure that correct type 
is used for size limitations 
•  Bytes vs. Characters – Will not be the same for variable with formats 



Preventing Buffer Overflows 

  Strategies 
•  Detect and remove vulnerabilities (best) 
•  Prevent code injection 
•  Detect code injection 
•  Prevent code execution 

  Stages of intervention 
•  Analyzing and compiling code 
•  Linking objects into executable 
•  Loading executable into memory 
•  Running executable 



Preventing Buffer Overflows 

  Type safe languages (Java, ML) 
•  Legacy code? 

  Splint - Check array bounds and pointers 
  Non-executable stack 
  Stackguard – put canary before RA 
  Libsafe – replace vulnerable library functions 
  RAD – check RA against copy 
  Analyze call trace for abnormality 
  PointGuard – encrypt pointers 
  Binary diversity – change code to slow worm propagation 
  PAX – binary layout randomization by kernel 
  Randomize system call numbers 
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Today’s Agenda 

  Buffer Overflow Sources 
  Buffer Overflow Attack Mechanics 
  Possible system-level solutions 
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What is needed 
  Understanding C functions and the stack. 
  Some familiarity with machine code. 
  Know how systems calls are made. 
  The exec() system call. 

•  A way to run a new program in Unix 
•  Does not create a new process,  but changes a current process to a new program 
•  What system call is needed to create a new process? 

  Attacker needs to know which CPU and OS are running on the target machine. 
•  Our examples are for  x86  running  Linux. 
•  Details vary slightly between CPU’s and OS: 

-  Stack growth direction. 
-  big endian vs. little endian. 
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Steps to Smashing the Stack 

  Inject machine code of exploit into heap or stack 
  Cause running program to jump to this code 
  Most common place to overflow is stack 

•  Large amount of potential buffers allocated in local functions 
•  Overwriting these buffers can also overwrite the return pointer 
•  Careful attacker can overwrite the return pointer with the mem 

location of the exploit code 
•  When the function RETs the program jumps to the start of the attack 

code 
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Stack Example:  
Before Attack 

 From Baratloo, et al., Transparent Run-Time  
Defense Against Stack Smashing Attacks 
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Stack Example:  
During Exploit 

 From Baratloo, et al., Transparent Run-Time  
Defense Against Stack Smashing Attacks 
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Stack Example:  
After attack 

 From Baratloo, et al., Transparent Run-Time  
Defense Against Stack Smashing Attacks 

# 
#id 
uid=0(root) gid=0(root) groups=0( 
root),1(bin),2(daemon),3(sys),4 ( 
adm),6(disk),10(wheel)  

Attacker’s Screen 
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Buffer Overflows and the Stack 

  To truly understand how a buffer overflow attack works you 
must understand the role the stack plays in a 3rd generation 
language function call 

  Stacks are an essential part of computer science 
  First-in/Last-Out storage 
  Their use for holding onto information that needs to be 

retrieved FIFO make them a very convenient way of recording 
function variables. 
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Stacks 

  A stack is a common data structure 
•  Supports two main functions (Push, and Pop) 
•  Push - Place data on stack 
•  Pop - Retrieve data from stack 

Push ‘a’ Push ‘b’ Push ‘c’ Pop 
a 

b 
a 

c
b 
a 

b 
a 

Stack Pointer 
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The Stack 

  Many modern programming languages (include C/C++) use a 
stacks to help implement functions 

  Functions 
•  Like Gotos (jumps), alter the flow of execution 
•  Unlike gotos allow the program to return control to the caller after a 

function is completed 
  Stacks are used to store important details  

needed to allow control to return to  
the calling process 
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Why stacks? 

  To allow functions to call functions 
  If functions could only be one level deep, then a fixed data 

structure could be used to store the return information 
  Since functions can call functions, it is important that all of the 

return information for each function call be saved 
  Since depth of functions is not defined at compile time, it is 

important that the amount of memory that needs to be 
reserved for function variables is dynamically allocated 
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Important Registers 

  EIP - Instruction Pointer 
•  Points to location in memory that the CPU should execute next 

  ESP - Stack Pointer 
•  Points to current “top” of stack 

  EBP - Frame Pointer 
•  Used to efficiently reference local variables 
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Function Call Walkthrough 

  When a caller transfers execution to a function the following 
steps are taken 
•  Arguments to function are pushed onto stack in reverse order 
•  Address of the next instruction in the calling function is pushed on the 

stack 
  The called function on start-up (prologue) must 

•  Push current value of EBP onto the stack 
•  Set EBP to current ESP value 
•  Allocate space for local variables by  

moving the stack point enough to leave 
space for them 
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Function Return Walkthrough 

  When the return occurs 
•  Return value of function is saved in accumulator 
•  ESP = EBP 
•  Pop EBP (to restore Frame Buffer) 
•  RET (EIP = Top of stack) 
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Stack Operation 
#include <stdio.h> 
int main(int argc, char *argv[]) 

{ 

   int x; 

   int y; 

   func(x); 

} 

int func(int a) { 

  char str[10];  

  int b=2; 

  strcpy(str, “Add A to B”); 

  printf(“%s”, str); 

  return b + a; 

} 

sfp(libc) 

ret addr (libc) 

argc 
argv 

a 
ret addr (main) 

sfp (main) 

Str 
b 

ESP -> 

ESP -> 

EBP -> 

IP 

IP 

EBP -> 

x 
y 
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Overflowing the Stack 

  Storing too much data in a variable causes the variable to 
overflow 

  The extra data does not disappear!  It is written to whatever is 
adjacent to the variable that has been overwritten. 

A D D A T O B 2 BFFFF784 804853D 

int func(int a) { 
  char str[10];  
  int b=2; 

  strcpy(str, “Add A to B”); 
  printf(“%s”, str); 
  return b + a; 
} str EBP RET b 

Is this value right? 
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Steps to Smashing the Stack 

  Inject machine code of exploit into heap or stack 
  Cause running program to jump to this code 
  Most common place to overflow is stack 

•  Large amount of potential buffers allocated in local functions 
•  Overwriting these buffers can also overwrite the return pointer 
•  Careful attacker can overwrite the return 

pointer with the mem location of the 
exploit code 

•  When the function RETs the program  
jumps to the start of the attack code 
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Overflow Past the EBP 

  Will normally cause the program to crash as the RET value will 
normally point to a region of memory outside the program 

A A A A A A A A A A A AAAAAA AAAAA 

int func(int a) { 
  char str[10];  
  int b=2; 

  gets(str); 
  printf(“Type a string: “); 
  printf(“%s”, str); 
  return b + a; 
} 

str EBP RET b 

$./testcode 
Type a string: AAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAA 
Segmentation fault (core dumped) 
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1 or 0 

Manipulation of the RET value 
  A careful attacker can overwrite the RET value with a valid 

location to return to 
•  Program will go to this new location when function ends and will not 

(always) core dump 

#include <stdlib.h>  
void function(int a, int b, int c) { 
        char buffer1[5]; 
        char buffer2[20]; 
        int *ret; 
        ret = buffer1 + 12; 
        (*ret) += 8; 
}  

void main() { 
        int x; 

        x = 0; 
        function(1,2,3); 
        x = 1; 
        printf("%d\n",x); 
}  

$./test 
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How can rewriting RET be used? 

  Denial of Service 
  Jumping past authentication code! 
  Accessing privileged system calls 
  Gaining a shell prompt 

•  By placing exploit code into a buffer 
•  Rewriting RET to jump into the buffer 

  Gaining a shell prompt 
•  Finding a usable argument in memory 

-  “/bin/sh” 
•  Calling existing library routines to  

spawn a shell 
-  execve 
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A simple shellcode example 
 char shellcode[] =        "\xeb\x1f\x5e
\x89\x76\x08\x31\xc0\x88\x46\x07\x89” 
“\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c” 

   “\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff” 

   “\xff\xff/bin/sh"; 

 void main() { 
    int *ret; 
    ret = (int *) &ret + 2;  
    (*ret) = (int)shellcode; 

   }  

$ ls -l testsc 

-rwsr-sr-x 1 root root 11450 Jun 10 10:07 testsc2* 

$ ./testsc 

# id 

uid=0(root)  
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Stack diagram of exploit 
  In this example the buffer was 

created by 
•  Creating a buffer with the exploit 

program 
•  Declaring a variable point ret. 
•  Moving ret to the location in memory 

of the RET ptr 
•  Overwriting RET with the start of the 

exploit code 
-  (*ret) = (int)shellcode; 

  In a real buffer overflow 
vulnerability, the attack would need 
a way to fill up the buffer from one 
of the program inputs 

sfp 

RET 

argc 
argv 

Exploit  
Prog 

\xeb\x1f\x5e\x89 
 \x76\x08\x31\xc0 
\x88\x46\x07\x89 

. 

. 
*ret 
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Today’s Agenda 

  Buffer Overflow Sources 
  Buffer Overflow Attack Mechanics 
  Possible system-level solutions  
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Libsafe 

  A replace library for some of the most common library 
functions that cause buffer overflows 

  http://www.avayalabs.com/project/libsafe/index.html 
  Protects return address by limiting stack access to the local 

stack 
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Libsafe stack size check 

  Libsafe determines at run-time the size of the stack by 
examining the current stack and frame pointers. 

  If one of its wrapped functions attempts to write data to the 
stack that would overwrite the return address or any of the 
parameters it is denied. 
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Libsafe Diagram 

 From Baratloo, et al., Transparent Run-Time  
Defense Against Stack Smashing Attacks 
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Libsafe is not a perfect solution 

  Implemented as a dynamic-link library. 
•  Allows protection of previously compiled programs 
•  Local attacker may be able to change to load order i.e. LD_PRELOAD 

to disable libsafe 
  Only protects a limited number of library calls 
  Only protects the return address on the stack.  Heap overflows 

are still possible. 
  As an application developer, you may not  

be able to rely on its presence. 
  Can be confused by some compiler 

optimizations. 
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Other solutions 

  Turn off stack execution 
•  Limited value as attackers may be able to easily find the calls they 

want already in the compiled program. 
  Use a compiler that adds bounds-checking code 

•  StackGuard (http://immunix.org/stackguard.html) 
-  Adds “canary” value in front of return address 
-  If canary overwritten, this return is not performed 

  Use routines that manage Strings for you! 
  Use languages that support dynamic 

memory management 
•  Java, Perl, Python 
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Next Thursday’s Class 

Error Handling 
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Questions? 


