
0
Copyright Ronald W. Ritchey 2008, All Rights Reserved

SWE 781
Secure Software Design and Programming
Buffer Overflows
Lecture 4

Ron Ritchey, Ph.D.
Chief Scientist

703/377.6704
Ritchey_ronald@bah.com

Copyright Ronald W. Ritchey 2008, All Rights Reserved
1

Readings for this lecture

  Chest & West
•  Chapters 6 & 7

  Wheeler
•  Chapter 6

  Additional readings
•  Buffer Overflows: Attacks and Defenses for the Vulnerability of the

Decade, Crispin Cowan, et al.
•  Smashing The Stack For Fun And Profit, Aleph One
•  Beyond Stack Smashing: Recent Advances in Exploiting Buffer

Overruns. Pincus and Baker.

Copyright Ronald W. Ritchey 2008, All Rights Reserved
2

Today’s Agenda

  Buffer Overflow Sources
  Buffer Overflow Attack Mechanics
  Possible system-level solutions

Copyright Ronald W. Ritchey 2008, All Rights Reserved
3

  Extremely common bug.
•  First major exploit: 1988 Internet Worm. fingerd.

  15 years later: ≈ 50% of all CERT advisories:
•  1998: 9 out of 13
•  2001: 14 out of 37
•  2003: 13 out of 28

  Often leads to total compromise of host.

  Developing buffer overflow attacks:
•  Locate buffer overflow within an application.
•  Design an exploit.

Buffer overflows

Examples

  (In)famous: Morris worm (1988)
•  gets() in fingerd

  Code Red (2001)
•  MS IIS .ida vulnerability

  Blaster (2003)
•  MS DCOM RPC vulnerability

  Mplayer URL heap allocation (2004)
% mplayer http://`perl –e ‘print
“\””x1024;’`

What is a Buffer Overflow?

  Intent
•  Arbitrary code execution

-  Spawn a remote shell or infect with worm/virus
•  Denial of service

  Steps
•  Inject attack code into buffer
•  Redirect control flow to attack code
•  Execute attack code

Attack Possibilities

  Targets
•  Stack, heap, static area
•  Parameter modification (non-pointer data)

-  E.g., change parameters for existing call to exec()
  Injected code vs. existing code
  Absolute vs. relative address dependencies
  Related Attacks

•  Integer overflows, double-frees
•  Format-string attacks

Copyright Ronald W. Ritchey 2008, All Rights Reserved
7

Buffer Overflows

  Extremely common programming flaw.
•  Causes difficult to debug problems
•  Also a leading cause of security vulnerabilities

  Caused when a program attempts to store more data in a
buffer than it can hold.

char buf[4];

strcpy(buf, “abcd”);

A B C D \0

buf overflowed by NIL terminator

Copyright Ronald W. Ritchey 2008, All Rights Reserved
8

Exploitable Buffer Overflows

  When the source of the data is controlled by the user/attacker
 #include <stdio.h>

 int main(int argc, char * argv[]) {

 char name[26];
 printf(“Please type your name: \n”);

 gets(name);
 printf(“Your name is %s\n”, name);

 }

$./name

Please type your name: Ron Ritchey

$./name

Please type your name: AAAAAAAAAAAAAAAAAAAAA
AAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Beginning of overflow

OK

Overflow

Copyright Ronald W. Ritchey 2008, All Rights Reserved
9

C string storage

  Much of the problem with buffer overflows comes from the way
that C represents strings
•  As an array of chars
•  Terminated by a NIL

  Many system calls count on the NIL value to properly
terminate

  Allocating space for strings can be misleading
as you must explicitly leave space for the
NIL

#define MAXNAME 7

char str[MAXNAME] // Not long enough

strcpy(str, “Ritchey”); // “Ritchey” is 8 chars long

Copyright Ronald W. Ritchey 2008, All Rights Reserved
10

Dangerous library routines

  ‘C/C++’ are filled with routines that do not perform bounds
checking
•  strcpy, strcat

-  Count on the NIL character to terminate
-  Will happily overwrite memory until a NIL is read from source

•  sprintf,etc
-  Must ensure destination buffer large enough to hold string that

results from all of the input variables
•  gets, scanf, etc

-  Do not limit input to fixed size
•  Format string driven functions

-  printf,sprintf, etc.
-  Allow attackers to write arbitrary values into memory if they can

influence content of format string

Copyright Ronald W. Ritchey 2008, All Rights Reserved
11

sprintf

  Very difficult to construct patterns of a fixed length.
  Destination must be large enough to hold the largest possible result
  Symantecs of width/precision vary depending upon the type of

variable

char buf[BUFFER_SIZE];

sprintf(buf, "%*s", sizeof(buf)-1, "long-string");
 /* WRONG */

sprintf(buf, "%.*s", sizeof(buf)-1, "long-string");
 /* RIGHT */

Copyright Ronald W. Ritchey 2008, All Rights Reserved
12

Alternative functions that bound operations

  Many replacement functions exist which allow you to specify a
maximum length

  strncpy(char *dst, char *src, size_t len)
•  Copies up to len bytes from src to dst
•  If src length >= to len, dst will NOT be NIL terminated
•  If src length < len, remainder of dst will be NIL filled

  strncat(char *dst, char *src, size_t len)
•  Appends up to len chars to end of dst
•  Like strncpy does not NIL terminate if length of src >= len
•  Be careful! len refers to the space remaining in dst

Copyright Ronald W. Ritchey 2008, All Rights Reserved
13

A better strncpy: strlcpy

  Available at ftp://ftp.openbsd.org/pub/OpenBSD/src/lib/libc/
string/strlcpy.3.

  size_t strlcpy (char *dst, const char *src, size_t size);
•  Copies up to size-1 characters from the NUL-terminated string src to

dst, NIL-terminating the result
•  dst is guaranteed to be nil terminated if size > 0
•  Size refers to total size of dst, not number of

bytes from src
  size_t strlcat(char *dst, const char *src, size_t size)

•  Concatenates src to dst using same semantics as strlcpy

Copyright Ronald W. Ritchey 2008, All Rights Reserved
14

Bounding is not a panacea

  It is still possible to introduce buffer overflow errors when using
bounded functions
•  Use a bad value for bound

-  Source length instead of
destination length

-  Lack of room for
NIL termination

•  Miscalculation of space available for concatenation (e.g. strncat)
-  Providing length of buffer instead of remaining space in buffer

•  Concatenated value changes semantics of use

void badfunc(char *s) {
 char buf[10];

 strncpy(buf, s, strlen(s));
}

Copyright Ronald W. Ritchey 2008, All Rights Reserved
15

Concatenation bounds must be based on
calculation of remaining space available

  Even the bounded concatenation
routines (e.g. strncat, strlcat) can
easily overflow buffers
•  When given unterminated input

-  Routines search for first NIL in input
to begin concatenation operation. If
no NIL is provided, routines will seek
past end of buffer until a NIL is
reached in memory. This can cause
very difficult to diagnosis failures

•  When bound value calculation is wrong
-  Bound value set to total size of

variable instead of remaining size
-  Remaining size value calculation

flawed

void badfunc() {
 char buf[10];

 char *s = “1234567890”;

 strncpy(buf, s, sizeof(buf));

 strncat(buf, “;”, sizeof(buf));
}

void betterfunc() {
 char buf[10];

 char *s = “1234567890”;

 strncpy(buf, s, sizeof(buf));

 buf[sizeof(buf)-1] = ‘\0’;

 strncat(buf, “;”,
 10 - strlen(buf));

}

What’s still
wrong with this?

Copyright Ronald W. Ritchey 2008, All Rights Reserved
16

String truncation vulnerabilities

  Just limiting the length of the input may not be enough to
prevent vulnerability. E.g.

fgets(line, 128, stdin);
// Check format
strncpy(buf, line, 12);
if (strncmp(“.mil”, line+strnlen(line,128)-4 , 4)) {
 // Allow access
}

  Input ABCDE123.milabcdefg will be accepted
  Always perform format checks just before use

Copyright Ronald W. Ritchey 2008, All Rights Reserved
17

Always make sure to terminate your strings

  Anytime there is a potential of truncation, make sure to
terminate properly
•  Writing NIL to last possible value often a good safety method

H e l l o W o r l d \0
char buf[20];
strncpy(buf, “Hello World”,
 sizeof(buf));
buf[sizeof(buf)-1] = ‘\0’;

H e l l o W o r l d W a r T h r e strncpy(buf, “Hello World
 War Three”, sizeof(buf));
buf[sizeof(buf)-1] = ‘\0’;

\0

\0 IP->

Copyright Ronald W. Ritchey 2008, All Rights Reserved
18

Format string vulnerabilities
  Format strings specify a set of formatting rules to be applied to create

a string based upon a set of input variables
 testfunc(char *varname, int varvalue) {
 printf(“%s value is %2d”, varname, varvalue);
 }

  Never allow the user to control the format string
 badfunc(char *s) {

 printf(s);
 }

•  May allow attacker to read arbitrary data locations in memory
•  With use of %n directive may be able to write to memory

-  %n writes the number of characters processed so far to the address
specified in the parameter list
 printf(“ABC%n”,number);

-  Overwriting any location of memory possible if attacker can control the
value of n and the location of memory that n will be written to

-  May allow attacker to gain control of instruction pointer
  E.g. overwrite ret value on stack, overwrite commonly called function pointer, etc.

Copyright Ronald W. Ritchey 2008, All Rights Reserved
19

Watch out for multi-byte character formats

  To support foreign character sets, multi-byte character formats
have been created
•  Unicode, UTF-8, UTF-16, ISO-8859-1

  Bytes per character vary based upon standard
•  Fixed Width – ISO-8859-1, UTF-32
•  Variable Width – UTF-8, UTF-16

  When using multi-byte functions, must ensure that correct type
is used for size limitations
•  Bytes vs. Characters – Will not be the same for variable with formats

Preventing Buffer Overflows

  Strategies
•  Detect and remove vulnerabilities (best)
•  Prevent code injection
•  Detect code injection
•  Prevent code execution

  Stages of intervention
•  Analyzing and compiling code
•  Linking objects into executable
•  Loading executable into memory
•  Running executable

Preventing Buffer Overflows

  Type safe languages (Java, ML)
•  Legacy code?

  Splint - Check array bounds and pointers
  Non-executable stack
  Stackguard – put canary before RA
  Libsafe – replace vulnerable library functions
  RAD – check RA against copy
  Analyze call trace for abnormality
  PointGuard – encrypt pointers
  Binary diversity – change code to slow worm propagation
  PAX – binary layout randomization by kernel
  Randomize system call numbers

Copyright Ronald W. Ritchey 2008, All Rights Reserved
22

Today’s Agenda

  Buffer Overflow Sources
  Buffer Overflow Attack Mechanics
  Possible system-level solutions

Copyright Ronald W. Ritchey 2008, All Rights Reserved
23

What is needed
  Understanding C functions and the stack.
  Some familiarity with machine code.
  Know how systems calls are made.
  The exec() system call.

•  A way to run a new program in Unix
•  Does not create a new process, but changes a current process to a new program
•  What system call is needed to create a new process?

  Attacker needs to know which CPU and OS are running on the target machine.
•  Our examples are for x86 running Linux.
•  Details vary slightly between CPU’s and OS:

-  Stack growth direction.
-  big endian vs. little endian.

Copyright Ronald W. Ritchey 2008, All Rights Reserved
24

Steps to Smashing the Stack

  Inject machine code of exploit into heap or stack
  Cause running program to jump to this code
  Most common place to overflow is stack

•  Large amount of potential buffers allocated in local functions
•  Overwriting these buffers can also overwrite the return pointer
•  Careful attacker can overwrite the return pointer with the mem

location of the exploit code
•  When the function RETs the program jumps to the start of the attack

code

Copyright Ronald W. Ritchey 2008, All Rights Reserved
25

Stack Example:
Before Attack

 From Baratloo, et al., Transparent Run-Time
Defense Against Stack Smashing Attacks

Copyright Ronald W. Ritchey 2008, All Rights Reserved
26

Stack Example:
During Exploit

 From Baratloo, et al., Transparent Run-Time
Defense Against Stack Smashing Attacks

Copyright Ronald W. Ritchey 2008, All Rights Reserved
27

Stack Example:
After attack

 From Baratloo, et al., Transparent Run-Time
Defense Against Stack Smashing Attacks

#id
uid=0(root) gid=0(root) groups=0(
root),1(bin),2(daemon),3(sys),4 (
adm),6(disk),10(wheel)

Attacker’s Screen

Copyright Ronald W. Ritchey 2008, All Rights Reserved
28

Buffer Overflows and the Stack

  To truly understand how a buffer overflow attack works you
must understand the role the stack plays in a 3rd generation
language function call

  Stacks are an essential part of computer science
  First-in/Last-Out storage
  Their use for holding onto information that needs to be

retrieved FIFO make them a very convenient way of recording
function variables.

Copyright Ronald W. Ritchey 2008, All Rights Reserved
29

Stacks

  A stack is a common data structure
•  Supports two main functions (Push, and Pop)
•  Push - Place data on stack
•  Pop - Retrieve data from stack

Push ‘a’ Push ‘b’ Push ‘c’ Pop
a

b
a

c
b
a

b
a

Stack Pointer

Copyright Ronald W. Ritchey 2008, All Rights Reserved
30

The Stack

  Many modern programming languages (include C/C++) use a
stacks to help implement functions

  Functions
•  Like Gotos (jumps), alter the flow of execution
•  Unlike gotos allow the program to return control to the caller after a

function is completed
  Stacks are used to store important details

needed to allow control to return to
the calling process

Copyright Ronald W. Ritchey 2008, All Rights Reserved
31

Why stacks?

  To allow functions to call functions
  If functions could only be one level deep, then a fixed data

structure could be used to store the return information
  Since functions can call functions, it is important that all of the

return information for each function call be saved
  Since depth of functions is not defined at compile time, it is

important that the amount of memory that needs to be
reserved for function variables is dynamically allocated

Copyright Ronald W. Ritchey 2008, All Rights Reserved
32

Important Registers

  EIP - Instruction Pointer
•  Points to location in memory that the CPU should execute next

  ESP - Stack Pointer
•  Points to current “top” of stack

  EBP - Frame Pointer
•  Used to efficiently reference local variables

Copyright Ronald W. Ritchey 2008, All Rights Reserved
33

Function Call Walkthrough

  When a caller transfers execution to a function the following
steps are taken
•  Arguments to function are pushed onto stack in reverse order
•  Address of the next instruction in the calling function is pushed on the

stack
  The called function on start-up (prologue) must

•  Push current value of EBP onto the stack
•  Set EBP to current ESP value
•  Allocate space for local variables by

moving the stack point enough to leave
space for them

Copyright Ronald W. Ritchey 2008, All Rights Reserved
34

Function Return Walkthrough

  When the return occurs
•  Return value of function is saved in accumulator
•  ESP = EBP
•  Pop EBP (to restore Frame Buffer)
•  RET (EIP = Top of stack)

Copyright Ronald W. Ritchey 2008, All Rights Reserved
35

Stack Operation
#include <stdio.h>
int main(int argc, char *argv[])

{

 int x;

 int y;

 func(x);

}

int func(int a) {

 char str[10];

 int b=2;

 strcpy(str, “Add A to B”);

 printf(“%s”, str);

 return b + a;

}

sfp(libc)

ret addr (libc)

argc
argv

a
ret addr (main)

sfp (main)

Str
b

ESP ->

ESP ->

EBP ->

IP

IP

EBP ->

x
y

Copyright Ronald W. Ritchey 2008, All Rights Reserved
36

Overflowing the Stack

  Storing too much data in a variable causes the variable to
overflow

  The extra data does not disappear! It is written to whatever is
adjacent to the variable that has been overwritten.

A D D A T O B 2 BFFFF784 804853D

int func(int a) {
 char str[10];
 int b=2;

 strcpy(str, “Add A to B”);
 printf(“%s”, str);
 return b + a;
} str EBP RET b

Is this value right?

Copyright Ronald W. Ritchey 2008, All Rights Reserved
37

Steps to Smashing the Stack

  Inject machine code of exploit into heap or stack
  Cause running program to jump to this code
  Most common place to overflow is stack

•  Large amount of potential buffers allocated in local functions
•  Overwriting these buffers can also overwrite the return pointer
•  Careful attacker can overwrite the return

pointer with the mem location of the
exploit code

•  When the function RETs the program
jumps to the start of the attack code

Copyright Ronald W. Ritchey 2008, All Rights Reserved
38

Overflow Past the EBP

  Will normally cause the program to crash as the RET value will
normally point to a region of memory outside the program

A A A A A A A A A A A AAAAAA AAAAA

int func(int a) {
 char str[10];
 int b=2;

 gets(str);
 printf(“Type a string: “);
 printf(“%s”, str);
 return b + a;
}

str EBP RET b

$./testcode
Type a string: AAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAA
Segmentation fault (core dumped)

Copyright Ronald W. Ritchey 2008, All Rights Reserved
39

1 or 0

Manipulation of the RET value
  A careful attacker can overwrite the RET value with a valid

location to return to
•  Program will go to this new location when function ends and will not

(always) core dump

#include <stdlib.h>
void function(int a, int b, int c) {
 char buffer1[5];
 char buffer2[20];
 int *ret;
 ret = buffer1 + 12;
 (*ret) += 8;
}

void main() {
 int x;

 x = 0;
 function(1,2,3);
 x = 1;
 printf("%d\n",x);
}

$./test

Copyright Ronald W. Ritchey 2008, All Rights Reserved
40

How can rewriting RET be used?

  Denial of Service
  Jumping past authentication code!
  Accessing privileged system calls
  Gaining a shell prompt

•  By placing exploit code into a buffer
•  Rewriting RET to jump into the buffer

  Gaining a shell prompt
•  Finding a usable argument in memory

-  “/bin/sh”
•  Calling existing library routines to

spawn a shell
-  execve

Copyright Ronald W. Ritchey 2008, All Rights Reserved
41

A simple shellcode example
 char shellcode[] = "\xeb\x1f\x5e
\x89\x76\x08\x31\xc0\x88\x46\x07\x89”
“\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c”

 “\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff”

 “\xff\xff/bin/sh";

 void main() {
 int *ret;
 ret = (int *) &ret + 2;
 (*ret) = (int)shellcode;

 }

$ ls -l testsc

-rwsr-sr-x 1 root root 11450 Jun 10 10:07 testsc2*

$./testsc

id

uid=0(root)

Copyright Ronald W. Ritchey 2008, All Rights Reserved
42

Stack diagram of exploit
  In this example the buffer was

created by
•  Creating a buffer with the exploit

program
•  Declaring a variable point ret.
•  Moving ret to the location in memory

of the RET ptr
•  Overwriting RET with the start of the

exploit code
-  (*ret) = (int)shellcode;

  In a real buffer overflow
vulnerability, the attack would need
a way to fill up the buffer from one
of the program inputs

sfp

RET

argc
argv

Exploit
Prog

\xeb\x1f\x5e\x89
 \x76\x08\x31\xc0
\x88\x46\x07\x89

.

.
*ret

Copyright Ronald W. Ritchey 2008, All Rights Reserved
43

Today’s Agenda

  Buffer Overflow Sources
  Buffer Overflow Attack Mechanics
  Possible system-level solutions

Copyright Ronald W. Ritchey 2008, All Rights Reserved
44

Libsafe

  A replace library for some of the most common library
functions that cause buffer overflows

  http://www.avayalabs.com/project/libsafe/index.html
  Protects return address by limiting stack access to the local

stack

Copyright Ronald W. Ritchey 2008, All Rights Reserved
45

Libsafe stack size check

  Libsafe determines at run-time the size of the stack by
examining the current stack and frame pointers.

  If one of its wrapped functions attempts to write data to the
stack that would overwrite the return address or any of the
parameters it is denied.

Copyright Ronald W. Ritchey 2008, All Rights Reserved
46

Libsafe Diagram

 From Baratloo, et al., Transparent Run-Time
Defense Against Stack Smashing Attacks

Copyright Ronald W. Ritchey 2008, All Rights Reserved
47

Libsafe is not a perfect solution

  Implemented as a dynamic-link library.
•  Allows protection of previously compiled programs
•  Local attacker may be able to change to load order i.e. LD_PRELOAD

to disable libsafe
  Only protects a limited number of library calls
  Only protects the return address on the stack. Heap overflows

are still possible.
  As an application developer, you may not

be able to rely on its presence.
  Can be confused by some compiler

optimizations.

Copyright Ronald W. Ritchey 2008, All Rights Reserved
48

Other solutions

  Turn off stack execution
•  Limited value as attackers may be able to easily find the calls they

want already in the compiled program.
  Use a compiler that adds bounds-checking code

•  StackGuard (http://immunix.org/stackguard.html)
-  Adds “canary” value in front of return address
-  If canary overwritten, this return is not performed

  Use routines that manage Strings for you!
  Use languages that support dynamic

memory management
•  Java, Perl, Python

49
Copyright Ronald W. Ritchey 2008, All Rights Reserved

Next Thursday’s Class

Error Handling

50
Copyright Ronald W. Ritchey 2008, All Rights Reserved

Questions?

